Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 154-160, 2023.
Article in English | WPRIM | ID: wpr-971670

ABSTRACT

The fungus Xylaria sp. KYJ-15 was isolated from Illigera celebica. Based on the one strain many compounds (OSMAC) strategy, the strain was fermented on potato and rice solid media, respectively. As a result, two novel steroids, xylarsteroids A (1) and B (2), which are the first examples of C28-steroid with an unusual β- and γ-lactone ring, respectively, along with two new dihydroisocoumarin glycosides, xylarglycosides A (3) and B (4), were identified. Their structures were elucidated by spectroscopic methods, X-ray diffraction and electronic circular dichroism (ECD) experiments. All isolated compounds were evaluated for cytotoxicity, DPPH radical scavenging activity, acetylcholinesterase inhibitory and antimicrobial effect. Compound 1 exhibited potent AChE inhibitory activity with an IC50 value of 2.61 ± 0.05 μmol·L-1. The β-lactone ring unit of 1 is critical for its AChE inhibitory activity. The finding was further confirmed through exploring the interaction of 1 with AChE by molecular docking. In addition, both compounds 1 and 2 exhibited obvious antibacterial activity against Bacillus subtilis with a minimum inhibitory concentration (MIC) of 2 μg·mL-1. Compounds 3 and 4 exhibited antibacterial activities against Staphylococcus aureus with MICs of 4 and 2 μg·mL-1, respectively, which also exhibited DPPH radical scavenging activity comparable to the positive control with IC50 values of 9.2 ± 0.03 and 13.3 ± 0.01 μmol·L-1, respectively.


Subject(s)
Humans , Acetylcholinesterase , Molecular Docking Simulation , Anti-Bacterial Agents , Glycosides , Lactones , Pain
2.
Braz. j. biol ; 83: e248842, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339343

ABSTRACT

Abstract Acetylcholinesterase (AChE) activity levels can be used as an indicator for AChE inhibition due to pesticide poisoning in bird species. We assessed the comparative brain cholinesterase (AChE) activity level of five bird species inhabiting pesticide exposed croplands and Protected Area i.e. Deva Vatala National Park (DVNP), Bhimber by using a spectrophotometric method. AChE activity levels ranged from 56.3 to 85.9 µmol/min/g of brain tissue of birds representing DVNP. However, AChE activity levels ranged from 27.6 to 79.9 µmol/min/g of brain tissue of birds representing croplands. AChE activity levels observed in Jungle babbler, Common babbler, and Red-vented bulbul showed significant differences (P < 0.05) at two sites. However, White wagtail and Black drongo demonstrated non-significant differences (P > 0.05). Maximum inhibition was recorded in Jungle babbler (53%) followed by Common babbler (35%), Red-vented bulbul (18%), White wagtail (15%), and Black drongo (7%). The brain cholinesterase inhibition levels under-protected ecosystems (DVNP, Bhimber) and agricultural landscape suggest insecticidal contamination and its impact on avifauna diversity. The study also emphasizes on the importance of pesticide-free zones to protect the biodiversity of birds.


Resumo Os níveis de atividade da acetilcolinesterase (AChE) podem ser usados ​​como um indicador para a inibição da AChE devido ao envenenamento por pesticidas em espécies de aves. Avaliamos o nível de atividade comparativa da colinesterase cerebral (AChE) de cinco espécies de aves que habitam áreas cultivadas expostas a pesticidas e Área Protegida, ou seja, Deva Vatala National Park (DVNP), Bhimber, usando um método espectrofotométrico. Os níveis de atividade da AChE variaram de 56,3 a 85,9 µmol / min / g de tecido cerebral de aves representando DVNP. No entanto, os níveis de atividade da AChE variaram de 27,6 a 79,9 µmol / min / g de tecido cerebral de aves representando áreas de cultivo. Os níveis de atividade de AChE observados no tagarela da selva, tagarela comum e bulbul vermelho exalado mostraram diferenças significativas (P < 0,05) em dois locais. No entanto, alvéola branca e drongo preto demonstraram diferenças não significativas (P > 0,05). A inibição máxima foi registrada no tagarela da selva (53%), seguido pelo tagarela comum (35%), bulbul vermelho (18%), alvéola branca (15%) e drongo preto (7%). Os níveis de inibição da colinesterase cerebral nos ecossistemas subprotegidos (DVNP, Bhimber) e na paisagem agrícola sugerem contaminação por inseticida e seu impacto na diversidade da avifauna. O estudo também enfatiza a importância das zonas livres de pesticidas para proteger a biodiversidade das aves.


Subject(s)
Animals , Pesticides/toxicity , Pakistan , Acetylcholinesterase , Birds , Cholinesterase Inhibitors/toxicity , Ecosystem , Crops, Agricultural
3.
Braz. j. biol ; 83: 1-8, 2023. map, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468925

ABSTRACT

Acetylcholinesterase (AChE) activity levels can be used as an indicator for AChE inhibition due to pesticide poisoning in bird species. We assessed the comparative brain cholinesterase (AChE) activity level of five bird species inhabiting pesticide exposed croplands and Protected Area i.e. Deva Vatala National Park (DVNP), Bhimber by using a spectrophotometric method. AChE activity levels ranged from 56.3 to 85.9 µmol/min/g of brain tissue of birds representing DVNP. However, AChE activity levels ranged from 27.6 to 79.9 µmol/min/g of brain tissue of birds representing croplands. AChE activity levels observed in Jungle babbler, Common babbler, and Red-vented bulbul showed significant differences (P 0.05). Maximum inhibition was recorded in Jungle babbler (53%) followed by Common babbler (35%), Red-vented bulbul (18%), White wagtail (15%), and Black drongo (7%). The brain cholinesterase inhibition levels under-protected ecosystems (DVNP, Bhimber) and agricultural landscape suggest insecticidal contamination and its impact on avifauna diversity. The study also emphasizes on the importance of pesticide-free zones to protect the biodiversity of birds.


Os níveis de atividade da acetilcolinesterase (AChE) podem ser usados como um indicador para a inibição da AChE devido ao envenenamento por pesticidas em espécies de aves. Avaliamos o nível de atividade comparativa da colinesterase cerebral (AChE) de cinco espécies de aves que habitam áreas cultivadas expostas a pesticidas e Área Protegida, ou seja, Deva Vatala National Park (DVNP), Bhimber, usando um método espectrofotométrico. Os níveis de atividade da AChE variaram de 56,3 a 85,9 µmol / min / g de tecido cerebral de aves representando DVNP. No entanto, os níveis de atividade da AChE variaram de 27,6 a 79,9 µmol / min / g de tecido cerebral de aves representando áreas de cultivo. Os níveis de atividade de AChE observados no tagarela da selva, tagarela comum e bulbul vermelho exalado mostraram diferenças significativas (P 0,05). A inibição máxima foi registrada no tagarela da selva (53%), seguido pelo tagarela comum (35%), bulbul vermelho (18%), alvéola branca (15%) e drongo preto (7%). Os níveis de inibição da colinesterase cerebral nos ecossistemas subprotegidos (DVNP, Bhimber) e na paisagem agrícola sugerem contaminação por inseticida e seu impacto na diversidade da avifauna. O estudo também enfatiza a importância das zonas livres de pesticidas para proteger a biodiversidade das aves.


Subject(s)
Animals , Acetylcholinesterase/deficiency , Bird Diseases/diagnosis , Bird Diseases/chemically induced , Pesticides/poisoning
4.
China Journal of Chinese Materia Medica ; (24): 707-714, 2023.
Article in Chinese | WPRIM | ID: wpr-970540

ABSTRACT

Chemical constituents in soft coral Sarcophyton glaucum were separated and purified by various chromatographic methods. Based on the spectral data, physicochemical properties, and comparison with the data reported in the literature, nine cembranoids, including a new cembranoid named sefsarcophinolide(1) together with eight known cembranoids, namely(+)-isosarcophine(2), sarcomilitatin D(3), sarcophytonolide J(4),(1S,3E,7E,13S)-11,12-epoxycembra-3,7,15-triene-13-ol(5), sarcophytonin B(6),(-)-eunicenone(7), lobophytin B(8), and arbolide C(9), were identified. As revealed by biological activity experiment results, compounds 2-6 had weak acetylcholinesterase inhibitory activity, and compound 5 displayed weak cytotoxicity against K562 tumor cell line.


Subject(s)
Animals , Anthozoa , Acetylcholinesterase , Cell Line, Tumor
5.
J. Health Biol. Sci. (Online) ; 10(1): 1-10, 01/jan./2022. tab, ilus
Article in Portuguese | LILACS | ID: biblio-1411330

ABSTRACT

Objetivo: descrever a atividade de inibição da enzima acetilcolinesterase (AChE), por meio de ativos extraídos de alcaloides naturais. Metodologia: este estudo se configura como uma revisão sistemática da literatura, no período de janeiro de 2015 a setembro de 2021, nas bases de dados PUBMED, LILACS e SCIENCE DIRECT, com os descritores Acetylcholinesterase; Alzheimer; Alkaloids. As informações obtidas foram tabuladas para avaliação dos alcaloides inibidores da acetilcolinesterase. Resultados: de 563 artigos encontrados, 17 foram utilizados. Dois deles relataram a atividade de alcaloides inibidores da AChE por meio de ensaios clínicos, enquanto os demais a realizaram por testes in vitro. De 160 substâncias estudadas, 48 apresentaram atividade anticolinesterásica, as quais foram avaliadas de acordo com a sua concentração inibitória média (IC50). Discussão: a eficiência dos alcaloides como inibidores da AChE, provavelmente está relacionada com sua carga positiva no pH do organismo e sua boa biodisponibilidade, tendo como consequência uma atividade duradoura in vivo, em comparação com os medicamentos sintéticos. Conclusão: no presente estudo, foi possível observar uma grande diversidade de substâncias alcalóidicas antiAChE. Contudo, torna-se necessária a realização de mais ensaios in vivo e in vitro para a constatação efetiva da atividade dessas moléculas.


Objective: describe the activity of the enzyme Acetylcholinesterase (AChE) through natural actives extracted from alkaloids. Methodology: this study is a systematic literature review, from January 2015 to September 2021, in the PUBMED, LILACS, and SCIENCE DIRECT databases, with the descriptors Acetylcholinesterase; Alzheimer's; Alkaloids. The information obtained was tabulated for the evaluation of Acetylcholinesterase inhibitor alkaloids. Results: of 563 articles found, 17 were used. Two of them reported the activity of AChE-inhibiting Alkaloids through clinical trials, while the others performed it through in vitro tests. Of 160 substances studied, 48 showed anticholinesterase activity, which was evaluated according to their mean inhibitory concentration (IC50). Discussion: the efficiency of Alkaloids as AChE inhibitors is probably related to their positive charge on the body's pH and their good bioavailability, resulting in a long-lasting activity in vivo compared to synthetic drugs. Conclusion: in the present study, it was possible to observe a great diversity of antiAChE alkaloid substances. However, it is necessary to carry out more in vivo and in vitro tests to verify the effective activity of these molecules.


Subject(s)
Alkaloids , Alzheimer Disease , Acetylcholinesterase , Therapeutics , Cholinesterases , Neurodegenerative Diseases , PubMed , Alkalies , Synthetic Drugs
6.
Bol. latinoam. Caribe plantas med. aromát ; 21(4): 418-430, jul. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1524860

ABSTRACT

Abstract: Comparative study GC - FID /M S of essential oils of fruits, leaves and roots of the endemic plant Angelica pancicii Vandas ex Velen. revealed a significant difference in their chemical composition. The enantiomeric purity of the main component in the fruit oil (+) - ß - phellandrene was a lso confirmed. In addition, imperatorin, isoimperatorin, oxypeucedanin, oxypeucedanin hydrate, angeloylpangelin and umbelliprenin were isolated from the fruit hexane extract. The content of these coumarins in the hexane extracts from different plant parts was further determined by HPLC. The essential oils and hexane extracts were assessed for their antioxidant potential and inhibitory effect towards  - amylase and acetylcholinesterase enzymes. The fruit and leaf essential oils (> 80%) as well as the fruit he xane extract (> 62%) significantly inhibited acetylcholinesterase enzyme. Distinguish free radical scavenging properties were detected for the leaf (Inh. 95.0 ± 2.2 %) and the root (Inh. 66.0 ± 2.4 %) extracts.


Resumen: Estudio comparativo GC - FID / MS de aceites esenciales de frutas, hojas y raíces de la planta endémica Angelica pancicii Vandas ex Velen revelaron una dife rencia significativa en su composición química. También se confirmó la pureza enantiomérica del componente principal del aceite de fruta (+) - ß - felandreno. Además, se aislaron imperatorina, isoimperatorina, oxipeucedanina, hidrato de oxipeucedanina, angeloi lpangelina y umbeliprenina del extracto de hexano del fruto. El contenido de estas cumarinas en los extractos de hexano de diferentes partes de la planta se determinó adicionalmente mediante HPLC. Los aceites esenciales y extractos de hexano se evaluaron p or su potencial antioxidante efecto inhibidor de las enzimas -  - amilasa y acetilcolinesterasa. Los aceites esenciales de frutas y hojas (> 80%), así como el extracto de hexano de frutas (> 62%) inhibieron significativamente la enzima acetilcolinesterasa. Se detectaron propiedades de captación de radicales libres diferenciadas para los extractos de hoja (Inh. 95,0 ± 2,2%) y de raíz (Inh. 66,0 ± 2,4%).


Subject(s)
Acetylcholinesterase/chemistry , Angelica/chemistry , alpha-Amylases/chemistry , Oils, Volatile/chemistry , Cholinesterase Inhibitors/chemistry , Plant Leaves/chemistry , Antioxidants
7.
Bol. latinoam. Caribe plantas med. aromát ; 21(4): 455-463, jul. 2022. ilus, tab, graf
Article in Spanish | LILACS | ID: biblio-1526702

ABSTRACT

Abstract: This article describes the chemical composition, physical properties and acetylcholinesterase (A ChE) and butyrylcholinesterase (BuChE) activity of stem - distilled essential oil (E O ) from Bursera graveolens wood chips, Burseraceae. The plant material was acquired in Quimis (Bosque de Sancán), city of Jipijapa in the province of Manabí, coastal region o f Ecuador. Thirty - six components were identified by CG - MS, which represented 98.54% of the volatile oil. The main components were limonene (68.52%) and mentofuran (20.37%). The hydrocarbon monoterpenes constituted the most abundant fractions. The average y ield of the E O was 1.26%. Regarding the physical properties of E O , the following values were obtained: relative density (1,029 g/mL), refractive index (1,477) and specific rotation (+4,567). The E O presented IC 50 inhibition values of 47.2 and 51.9 µg/mL fo r the enzymes AChE and BuChE, respectively.


Resumen: Este artículo describe la composición química, propiedades físicas y actividad acetilcolinesterasa (AChE) y butirilcolinesterasa (BuChE) del aceite esencial (AE) destilado a vapor de astillas de madera de Bursera graveolens , Burseraceae. La materia vegetal fue adquirida en Quimis (Bosque de Sancán), ciudad de Jipijapa en la provincia de Manabí, región costera d e Ecuador. Treinta y seis componentes fueron identificados por CG - MS, que representaron al 98.54 % del aceite volátil. Los componentes principales fueron limoneno (68.52%) y mentofurano (20.37%). Los monoterpenos hidrocarburos constituyeron las fracciones m ás abundantes. El rendimiento medio del AE fue de 1.26%. Con respecto a las propiedades físicas del AE se obtuvo los siguientes valores, densidad relativa (1.029 g/mL), índice de refracción (1.477) y rotación específica (+4.567). El AE presentó valores de inhibición IC 50 de 47.2 y 51.9 µg/mL para las enzimas AChE y BuChE, respectivamente.


Subject(s)
Oils, Volatile/chemistry , Bursera/metabolism , Bursera/chemistry , Acetylcholinesterase/pharmacology , Acetylcholinesterase/chemistry , Butyrylcholinesterase/pharmacology , Butyrylcholinesterase/chemistry , Oils, Volatile/pharmacology , Ecuador
8.
Journal of Zhejiang University. Science. B ; (12): 230-240, 2022.
Article in English | WPRIM | ID: wpr-929054

ABSTRACT

Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.


Subject(s)
Animals , Mice , Acetylcholinesterase/metabolism , Anthozoa/microbiology , Anti-Inflammatory Agents/pharmacology , Aspergillus/chemistry , Benzaldehydes/pharmacology , Signal Transduction
9.
Chinese journal of integrative medicine ; (12): 809-816, 2022.
Article in English | WPRIM | ID: wpr-939794

ABSTRACT

OBJECTIVES@#To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats.@*METHODS@#The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively.@*RESULTS@#ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01).@*CONCLUSION@#ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.


Subject(s)
Animals , Rats , Acetylcholinesterase , Autophagy , Brain Ischemia/metabolism , Cerebral Infarction , Cognitive Dysfunction/drug therapy , Glutathione/metabolism , Glycosides , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Stroke/drug therapy , Superoxide Dismutase/metabolism , alpha7 Nicotinic Acetylcholine Receptor
10.
Braz. J. Pharm. Sci. (Online) ; 58: e20464, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403751

ABSTRACT

Abstract Papaveraceae is one of the prominent alkaloid-containing families, and plants of the genus Glaucium (Papaveraceae) are known for their bioactive alkaloids. Glaucium species have been used in traditional medicine in Turkey as an analgesic, narcotic, sedative, and antitussive. In this study, it was planned to evaluate the inhibitory activity of an alkaloidal extract of Glaucium corniculatum subsp. refractum on acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and prolyl oligopeptidase (POP), as well as exploring the chemical profile of the plant by using Gas Chromatography-Mass Spectrometry (GC-MS). The AChE, BuChE and POP inhibition activities of the alkaloidal extract of G. corniculatum subsp. refractum were determined spectrophotometrically. A rapid GC-MS method was used to identify alkaloids that could be responsible for these inhibition activities. In total, eleven alkaloids were identified in the alkaloid extract of the plant by GC-MS. Allocyptopine (52.92%) and protopine (25.38%) were found as the major constituents. The alkaloidal extract of G. corniculatum subsp. refractum showed potent AChE inhibitory activity (IC50:1.25 µg/mL) and BuChE inhibitory activity (IC50: 7.02 µg/mL). The extract also showed a remarkable inhibitory effect on POP with an IC50 value of 123.69 µg/mL. This study presents the first GC-MS investigation and POP inhibitory activity of G. corniculatum subsp. refractum.


Subject(s)
Acetylcholinesterase/adverse effects , Butyrylcholinesterase/adverse effects , Papaveraceae/metabolism , Plant Extracts/agonists , Alkaloids/analysis , Gas Chromatography-Mass Spectrometry/methods , Medicine, Traditional
11.
Braz. J. Pharm. Sci. (Online) ; 58: e19958, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383955

ABSTRACT

Abstract The ß-carboline-1,3,5-triazine hydrochlorides 8-13 were evaluated in vitro against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The analysed compounds were selective to BuChE, with IC50 values in the range from 1.0-18.8 µM being obtained. The N-{2-[(4,6-dihydrazinyl-1,3,5-triazin-2-yl)amino]ethyl}-1-phenyl-ß-carboline-3-carboxamide (12) was the most potent compound and kinetic studies indicate that it acts as a competitive inhibitor of BuChE. Molecular docking studies show that 12 strongly interacts with the residues of His438 (residue of the catalytic triad) and Trp82 (residue of catalytic anionic site), confirming that this compound competes with the same binding site of the butyrylthiocholine


Subject(s)
Triazines/adverse effects , In Vitro Techniques/methods , Pain , Acetylcholinesterase/pharmacology , Butyrylcholinesterase/pharmacology , Butyrylthiocholine/adverse effects , Carbolines/agonists , Cholinesterase Inhibitors/administration & dosage , Molecular Docking Simulation/instrumentation
12.
Braz. J. Pharm. Sci. (Online) ; 58: e19472, 2022. tab, graf
Article in English | LILACS | ID: biblio-1384016

ABSTRACT

Abstract The purpose of this study was to investigate the relationship between the acetylcholinesterase (AChE) inhibitory and antigenotoxic effect with the neuroprotective activity of Glaucium corniculatum methanol and water extracts rich in rutin and quercetin flavonoids. Neuroprotective activity in terms of cell survival and development against oxidative damage was measured by MTT assay and microscopic analysis in H2O2-induced NGF-differentiated PC12 (dPC12) cells. QRT-PCR and western blot hybridization method was employed for the determination of AChE inhibition of the extracts in the same cell model, and the genotoxic and antigenotoxic effects were identified with Comet assay with human lymphocytes. H2O2-induced vitality loss in dPC12 cells was inhibited in pre-treated cells with these plant extracts. Moreover, extracts stimulated neurite formation and prevented the oxidative stress-induced reduction in neurite growth. In general, it was determined that G. corniculatum methanol extract containing higher amounts of rutin and quercetin was more effective than water extract in terms of AChE inhibitory, antigenotoxic and also neuroprotective effect. In this study, it was shown for the first time that both AChE inhibitory and antigenotoxic effects of G. corniculatum may be effective in neuroprotection and it's protective and therapeutic effects against neurodegeneration may be related to the flavonoid content.


Subject(s)
Acetylcholinesterase/adverse effects , Plant Extracts/agonists , Papaveraceae/classification , Neuroprotection , Pain/classification , Flavonoids/pharmacology , Blotting, Western , Neuroprotective Agents
13.
Braz. j. biol ; 81(3): 632-641, July-Sept. 2021. tab
Article in English | LILACS | ID: biblio-1153394

ABSTRACT

Abstract In this sense the objective of assessing the levels of pesticide poisoning in rural farmers of San Sebastian and take AL, using acetylcholinesterase enzymes Erythrocyte and plasma as biological indicator of intoxication. This is a prospective, transversal and descriptive variables analyzed were: year whose, sex, age group, education, location, condition, route of exposure. The data were acquired by collecting blood samples and socio demographic information of farmers. Was put as the determining factor the type of conventional and organic farming, and periods of drought and rainy. 56 volunteers were analyzed. The analyses were performed in the automatic biochemical Analyzer Cobas Integra 400 plus®. According to the results of the analyses, it was the largest number of individuals with reduced values of cholinesterase, specifically the Group of conventional farming, the period of greatest change index was in the rainy season, where the activity of AChE, expressive values presented in the city of São Sebastião, with 80% result of intoxicated, in the city of the foot - take, 21.73% over the same period. On analysis of the AChP, São Sebastião has obtained the highest number of contaminated with 18.75% and 30% respectively, in the District Take Foot stood between 10 and 21.73% of reduced levels of cholinesterase. This sets the organic system of cultivation, as the best alternative for prevention of future diseases, in addition to bringing quality of life for rural workers, as well as for consumers.


Resumo Nesse sentido objetivou-se avaliar os níveis de intoxicação por agrotóxicos em agricultores rurais de São Sebastião e Pé Leve - AL, utilizando as enzimas acetilcolinesterase Eritrocitária e Plasmática, como indicador biológico de intoxicação. Trata - se de um estudo prospectivo, transversal e descritivo cujas variáveis analisadas foram: ano, sexo, faixa etária, escolaridade, local, circunstância, via de exposição. Os dados foram adquiridos através da coleta das amostras de sangue e das informações sócio demográficas dos agricultores. Foi posto como fator determinante o tipo de cultivo convencional e orgânico, e os períodos de estiagem e chuvoso. Foram analisados 56 voluntários. As análises foram realizadas no analisador automático de bioquímica Cobas Integra® 400 plus. De acordo com os resultados das análises, percebeu-se maior número de indivíduos com valores diminuídos da colinesterase, especificamente no grupo de cultivo convencional, o período de maior índice de alteração foi na época chuvosa, onde a atividade da AChE, apresentou valores expressivos na cidade de São Sebastião, com resultado de 80% de intoxicados, na cidade do Pé - Leve, obteve-se 21,73% no mesmo período. Na análise da AChP, São Sebastião obteve maior número de contaminados com 18,75% e 30% respectivamente, já no Distrito Pé Leve ficou entre 10 e 21,73% de níveis diminuídos da colinesterase. Isso define o sistema orgânico de cultivo, como a melhor alternativa para prevenção de futuras patologias, além de trazer qualidade de vida para os trabalhadores rurais, como também para os consumidores.


Subject(s)
Humans , Pesticides , Occupational Exposure/analysis , Acetylcholinesterase , Quality of Life , Prospective Studies , Farmers
14.
Rev. bras. parasitol. vet ; 30(2): e002221, 2021. graf
Article in English | LILACS | ID: biblio-1251367

ABSTRACT

Abstract This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Resumo Este estudo relata a ação de óleos essenciais de cinco plantas na atividade de acetilcolinesterases (AChE) nativas e recombinantes de Rhipicephalus microplus. A atividade enzimática do extrato de acetilcolinesterase nativa suscetível (S.AChE) e resistente (R.AChE) e da enzima recombinante (rBmAChE1) foi determinada. Um teste de inibição da AChE foi utilizado, para verificar o efeito dos óleos essenciais sobre a atividade enzimática. Óleos essenciais de Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var. dulcis inibiram a atividade de S.AChE e R.AChE. Os óleos das duas espécies de Citrus inibiram S.AChE e R.AChE de maneira semelhante, mas mostraram maior inibição sobre R.AChE. O óleo de E. globulus inibiu a AChE nativa, mas sem diferença entre a S.AChE e a R.AChE; no entanto, 71% de inibição para rBmAChE1 foi observada. O óleo de Mentha piperita também inibiu S.AChE e R.AChE, mas houve inibição significativa apenas nas concentrações mais altas testadas. O óleo de Cymbopogon winterianus não inibiu a AChE. Estudos adicionais são necessários com os óleos das duas espécies de Citrus que inibiram a R.AchE, devido ao problema de R. microplus resistente aos organofosforados ter como alvo AChE. O óleo de C. winterianus pode ser usado contra populações de R. microplus, que são resistentes a organofosforados, porque suas propriedades acaricidas agem por mecanismos diferentes.


Subject(s)
Animals , Oils, Volatile/pharmacology , Cholinesterase Inhibitors/pharmacology , Cymbopogon , Rhipicephalus/enzymology , Acaricides/pharmacology , Acetylcholinesterase , Larva
15.
J. venom. anim. toxins incl. trop. dis ; 27: e20210009, 2021. tab, graf, ilus, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1279406

ABSTRACT

Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.(AU)


Subject(s)
Animals , Acetylcholinesterase , Spider Venoms/toxicity , Neurotransmitter Agents , Neurodegenerative Diseases , In Vitro Techniques
16.
J. venom. anim. toxins incl. trop. dis ; 27: e20200047, 2021. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1287090

ABSTRACT

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Subject(s)
Animals , Bungarus , Elapid Venoms/toxicity , Synthetic Biology , Palladium , Acetylcholinesterase
17.
China Journal of Chinese Materia Medica ; (24): 4424-4432, 2021.
Article in Chinese | WPRIM | ID: wpr-888142

ABSTRACT

The chemical constituents from the roots of Aconitum kongboense were studied. Twenty-five diterpenoid alkaloids were isolated from the 95% methanol extract of the roots of A. kongboense by silica gel, reverse-phase silica gel and basic alumina column chromatography. They included a new aconitine-type diterpenoid alkaloid, named as kongboensenine(1), and twenty-four known ones(2-25), i.e., acotarine F(2), acotarine G(3), 14-acetyltalatisamine(4), talatisamine(5), indaconitine(6), yunaconitine(7), chasmanine(8), 6-epi-foresticine(9), homochasmanine(10), 8-deacetyl-yunaconitine(11), chasmaconitine(12), ajaconine(13), franchetine(14), ezochasmanine(15), crassicautine(16), 14-O-deacylcrassicausine(17), genicunine A(18), falconeridine(19), sachaconitine(20), liljestrandisine(21), 8-methyl-14-acetyltalatisamine(22), kongboendine(23), 14-benzoylchasmanine(24) and pseudaconine(25). Their structures were elucidated by common spectroscopic methods including high-resolution electrospray ionization mass spectrometry(HR-ESI-MS) and nuclear magnetic resonance(NMR) techniques. Compounds 2-4, 10, 13, 15-19 and 21-22 were isolated from this plant for the first time. Experimental results showed that all compounds did not have a significant inhibitory activity against acetylcholinesterase(AChE).


Subject(s)
Acetylcholinesterase , Aconitum/metabolism , Alkaloids , Diterpenes , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Roots/metabolism
18.
Chinese Journal of Biotechnology ; (12): 4047-4055, 2021.
Article in Chinese | WPRIM | ID: wpr-921485

ABSTRACT

The biocompatibility of nanomaterials has attracted much attention. Graphene oxide (GO) is a nanomaterial widely used in biomedicine, but its toxicity can not be ignored. In this study, the effect of GO on the blood system (the hemolysis rate, the fragility of erythrocyte, and acetylcholinesterase activity) was systematically investigated. The results showed that the hemolysis rate of erythrocytes was lower than 8% when the GO concentration was below 100 μg/mL (P5 μm (LGO) increased the activity of acetylcholinesterase by 42.67% (P<0.05). Then molecular dynamics simulation was used to study how GO interacted with acetylcholinesterase and increased its activity. The results showed that GO was attached to the cell membrane, thus may provide an electronegative environment that helps the hydrolysate to detach from the active sites more quickly so as to enhance the activity of acetylcholinesterase.


Subject(s)
Acetylcholinesterase , Erythrocytes , Graphite , Nanostructures
19.
Braz. J. Pharm. Sci. (Online) ; 57: e18310, 2021. tab, graf
Article in English | LILACS | ID: biblio-1350230

ABSTRACT

This study aimed to evaluate the anticholinesterase activities of extracts and fractions of Ocotea daphnifolia in vitro and characterize its constituents. The effects of hexane, ethyl acetate, and ethanolic extracts on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity were determined with a spectrophotometry assay. All extracts inhibited cholinesterase activity, and the ethanolic extract (2 mg/mL) exhibited the highest inhibition of both enzymes (99.7% for BuChE and 82.4% for AChE). The ethanolic extract was fractionated by column chromatography resulting in 14 fractions that were also screened for their anticholinesterase effects. Fraction 9 (2 mg/mL) showed the highest activity, inhibiting AChE and BuChE by 71.8% and 90.2%, respectively. This fraction was analyzed by high-performance liquid chromatography high-resolution mass spectrometry which allowed the characterization of seven glycosylated flavonoids (containing kaempferol and quercetin nucleus) and one alkaloid (reticuline). In order to better understand the enzyme-inhibitor interaction of the reticuline toward cholinesterase, molecular modeling studies were performed. Reticuline targeted the catalytic activity site of the enzymes. Ocotea daphnifolia exhibits a dual cholinesterase inhibitory activity and displays the same pattern of intermolecular interactions as described in the literature. The alkaloid reticuline can be considered as an important bioactive constituent of this plant.


Subject(s)
In Vitro Techniques/instrumentation , Cholinesterase Inhibitors/analysis , Lauraceae/classification , Ocotea/adverse effects , Molecular Docking Simulation/instrumentation , Plants, Medicinal/anatomy & histology , Acetylcholinesterase/adverse effects , Spectrophotometry/instrumentation , Flavonoids , Butyrylcholinesterase/adverse effects , Alkaloids
20.
Braz. J. Pharm. Sci. (Online) ; 57: e19154, 2021. tab, graf
Article in English | LILACS | ID: biblio-1350235

ABSTRACT

Hippeastrum puniceum is a species that belongs to the Amaryllidaceae family. A particular characteristic of this family is the consistent and very specific presence of isoquinoline alkaloids, which have demonstrated a wide range of biological activities such as antioxidant, antiviral, antifungal, antiparasitic, and acetylcholinesterase inhibitory activity, among others. In the present work, fifteen alkaloids were identified from the bulbs of Hippeastrum puniceum (Lam.) Kuntz using a GC-MS approach. The alkaloids 9-O-demethyllycoramine, 9-demethyl-2α-hydroxyhomolycorine, lycorine and tazettine were isolated through chromatographic techniques. The typical Amaryllidaceae alkaloids lycorine and tazettine, along with the crude and ethyl acetate extract from bulbs of the species were evaluated for their inhibitory potential on α-amylase, α-glucosidase, tyrosinase and acetylcholinesterase activity. Although no significant inhibition activity was observed against α-amylase, α-glucosidase and tyrosinase from the tested samples, the crude and ethyl acetate extracts showed remarkable acetylcholinesterase inhibitory activity. The biological activity results that correlated to the alkaloid chemical profile by GC-MS are discussed herein. Therefore, this study contributed to the knowledge of the chemical and biological properties of Hippeastrum puniceum (Lam.) and can subsidize future studies of this species


Subject(s)
Amaryllidaceae Alkaloids/analysis , Amaryllidaceae/classification , Acetylcholinesterase/adverse effects , Cholinesterase Inhibitors/pharmacology , Acetates/agonists , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL